\(\int \frac {(d+e x)^2}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [1968]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 116 \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {2 e \left (c d^2+a e^2+2 c d e x\right )}{3 c d \left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-2/3*(e*x+d)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+2/3*e*(2*c*d*e*x+a*e^2+c*d^2)/c/d/(-a*e^2+c*d^2)^2/(a
*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {666, 627} \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2 e \left (a e^2+c d^2+2 c d e x\right )}{3 c d \left (c d^2-a e^2\right )^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 (d+e x)}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[In]

Int[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*e*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*c*
d*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 627

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x
+ c*x^2])), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 666

Int[((d_.) + (e_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)*((a + b*x +
 c*x^2)^(p + 1)/(c*(p + 1))), x] - Dist[e^2*((p + 2)/(c*(p + 1))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fr
eeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p,
-1]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (d+e x)}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {e \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 c d} \\ & = -\frac {2 (d+e x)}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {2 e \left (c d^2+a e^2+2 c d e x\right )}{3 c d \left (c d^2-a e^2\right )^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.51 \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^2 \left (-3 a e^2+c d (d-2 e x)\right )}{3 \left (c d^2-a e^2\right )^2 ((a e+c d x) (d+e x))^{3/2}} \]

[In]

Integrate[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^2*(-3*a*e^2 + c*d*(d - 2*e*x)))/(3*(c*d^2 - a*e^2)^2*((a*e + c*d*x)*(d + e*x))^(3/2))

Maple [A] (verified)

Time = 2.87 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.73

method result size
trager \(\frac {2 \left (2 x c d e +3 e^{2} a -c \,d^{2}\right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \left (c d x +a e \right )^{2}}\) \(85\)
gosper \(\frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{3} \left (2 x c d e +3 e^{2} a -c \,d^{2}\right )}{3 \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}\) \(90\)
default \(d^{2} \left (\frac {\frac {4}{3} x c d e +\frac {2}{3} e^{2} a +\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}+\frac {16 c d e \left (2 x c d e +e^{2} a +c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )+e^{2} \left (-\frac {x}{2 c d e {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (-\frac {1}{3 c d e {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (\frac {\frac {4}{3} x c d e +\frac {2}{3} e^{2} a +\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}+\frac {16 c d e \left (2 x c d e +e^{2} a +c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{2 c d e}\right )}{4 c d e}+\frac {a \left (\frac {\frac {4}{3} x c d e +\frac {2}{3} e^{2} a +\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}+\frac {16 c d e \left (2 x c d e +e^{2} a +c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{2 c}\right )+2 d e \left (-\frac {1}{3 c d e {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (\frac {\frac {4}{3} x c d e +\frac {2}{3} e^{2} a +\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) {\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}+\frac {16 c d e \left (2 x c d e +e^{2} a +c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{2 c d e}\right )\) \(812\)

[In]

int((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(2*c*d*e*x+3*a*e^2-c*d^2)/(a^2*e^4-2*a*c*d^2*e^2+c^2*d^4)/(c*d*x+a*e)^2*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^
(1/2)

Fricas [A] (verification not implemented)

none

Time = 1.11 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.34 \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x - c d^{2} + 3 \, a e^{2}\right )}}{3 \, {\left (a^{2} c^{2} d^{4} e^{2} - 2 \, a^{3} c d^{2} e^{4} + a^{4} e^{6} + {\left (c^{4} d^{6} - 2 \, a c^{3} d^{4} e^{2} + a^{2} c^{2} d^{2} e^{4}\right )} x^{2} + 2 \, {\left (a c^{3} d^{5} e - 2 \, a^{2} c^{2} d^{3} e^{3} + a^{3} c d e^{5}\right )} x\right )}} \]

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x - c*d^2 + 3*a*e^2)/(a^2*c^2*d^4*e^2 - 2*a^3*c*d^2*e
^4 + a^4*e^6 + (c^4*d^6 - 2*a*c^3*d^4*e^2 + a^2*c^2*d^2*e^4)*x^2 + 2*(a*c^3*d^5*e - 2*a^2*c^2*d^3*e^3 + a^3*c*
d*e^5)*x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more de

Giac [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[2,2,0]%%%},[4,0]%%%}+%%%{%%{[%%%{-4,[1,1,1]%%%},0
]:[1,0,%%%{

Mupad [B] (verification not implemented)

Time = 10.17 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.62 \[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2\,\left (-c\,d^2+2\,c\,x\,d\,e+3\,a\,e^2\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{3\,{\left (a\,e+c\,d\,x\right )}^2\,{\left (a\,e^2-c\,d^2\right )}^2} \]

[In]

int((d + e*x)^2/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)

[Out]

(2*(3*a*e^2 - c*d^2 + 2*c*d*e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(3*(a*e + c*d*x)^2*(a*e^2 - c*
d^2)^2)